首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15508篇
  免费   3461篇
  国内免费   3916篇
测绘学   1473篇
大气科学   3211篇
地球物理   3973篇
地质学   8102篇
海洋学   2293篇
天文学   618篇
综合类   1564篇
自然地理   1651篇
  2024年   32篇
  2023年   286篇
  2022年   762篇
  2021年   878篇
  2020年   762篇
  2019年   800篇
  2018年   904篇
  2017年   858篇
  2016年   965篇
  2015年   828篇
  2014年   1050篇
  2013年   1037篇
  2012年   953篇
  2011年   971篇
  2010年   951篇
  2009年   928篇
  2008年   819篇
  2007年   848篇
  2006年   669篇
  2005年   622篇
  2004年   419篇
  2003年   410篇
  2002年   472篇
  2001年   453篇
  2000年   446篇
  1999年   638篇
  1998年   566篇
  1997年   505篇
  1996年   495篇
  1995年   410篇
  1994年   391篇
  1993年   335篇
  1992年   295篇
  1991年   235篇
  1990年   186篇
  1989年   161篇
  1988年   141篇
  1987年   70篇
  1986年   79篇
  1985年   53篇
  1984年   39篇
  1983年   26篇
  1982年   43篇
  1981年   14篇
  1980年   18篇
  1979年   12篇
  1978年   10篇
  1977年   9篇
  1962年   5篇
  1958年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
A series of experiments were done to reveal the overtopping breaching process of non-cohesive and cohesive levees in a U-bend flume. The flood hydrograph and breaching geometry were measured and analyzed in detail. The results show that the levee breaching processes can be briefly divided into four stages: slope erosion, longitudinal headward gully-cutting, lateral erosion, and relative stabilization. For non-cohesive levees, non-symmetrical lateral development of the breach occurs throughout the four stages, and the final non-symmetrical coefficient is approximately 2.2–2.6. Larger flow discharge or higher water level can accelerate the breaching process, while coarser sands tend to accelerate the process initially but depress the process at the end. The fluvial erosion rate of a non-cohesive breach shows a power-function relation with the excess wall shear stress. For cohesive levees, a plateau forms in the breach partially blocking the flow in the first two stages. The breach flow is approximately perpendicular to the levee body, and, thus, the erosion rates of the two breach sides are almost the same. Non-symmetrical lateral development mainly occurs in the third stage when the deep gully forms. The final non-symmetrical coefficient is approximately 2.7–3.3. It is expected that these findings can provide a valuable experimental dataset and a theoretical basis for breach closure and flood alleviation.  相似文献   
82.
2017年6月3日阿拉善左旗5.0级地震震源深度测定   总被引:1,自引:1,他引:0  
2017年6月3日18时11分内蒙古阿拉善左旗(37.99° N,103.56° E)发生5.0级地震,利用近震深度震相sPL测定法、CAP波形反演法、sPn与Pn震相走时差法,进行震源深度精确测定。研究结果表明,3种方法测得的该地震震源深度基本一致,分布范围为8.5—11 km,表明该地震发生在上地壳。  相似文献   
83.
利用双差定位方法,对2013年10月—2016年12月乳山震群进行重定位,并计算乳山震群中地震集中活动区域b值,分析其深度分布变化。结果显示:地震重定位后表现为近NW向集中分布;b值在震源深度7.4 km上下最小,反映该深度处应力最强;乳山震群b值并不随震源深度增大而呈系统性减小变化,且深度10.2 km以下无有效b值,进一步证实该震群近NW向发震断裂的存在。根据b值随深度的变化特征,推测断裂活动的高应力区域集中在6.5—10.2 km深度范围内,断裂活动在深度7.4 km处应力最强,且水平分布最广;相比上下两侧地壳介质b值在5.5—6.2 km深度层位明显增大,反映该深度层位介质性质存在明显差异。  相似文献   
84.
选取2015年阿拉善左旗5.8级地震发生后,中国地震科学台阵探测-南北地震带北段项目、中国地震局地球物理研究所中国地震科学探测台阵数据中心及内蒙古测震台网记录到此次地震序列的78次地震波形资料,采用单纯型法、Hyposat法、双差定位方法、确定性方法(PTD方法)、CAP地震矩张量反演法重新测定深度,并将所获深度值进行对比分析,结果发现,确定性方法(PTD方法)和双差定位方法较符合震源区构造特征的深度测定,单纯型法、Hyposat法效果不佳,CAP法适用于较大地震;地震序列平均震源深度为(15.54±8)km。  相似文献   
85.
地下水动态受水文因素影响较大,对地震和构造活动具有较灵敏的响应。判别并排除各种水文干扰,确认地下水在地震前的异常变化,对提高地震分析预报能力,具有重要作用。马家沟矿井水位动态观测层与地下水开采层为同一含水层,井水位于2010年出现破年变异常,加速持续上升,截至2015年,最大上升幅度约30 m。依据该井水文地质环境特征,根据唐山市区2001-2015年地下水位、降雨量、地下水开采量实测资料,建立合理多元回归模型和三维地下水流动模型,发现地下水开采量减少应为影响马家沟矿井水位动态的可能因素。文中采取的异常识别与分析方法,可为其他类似井孔的地下水动态异常识别及判定提供一定借鉴。  相似文献   
86.
发生在孕震区周边地块上的临震预滑和震颤现象,对破坏性地震预测有一定前兆意义,是值得地震学界关注的问题。选取2008年5月12日汶川MW 7.9地震发生前,临夏和湟源地震台分量应变仪记录与临夏、恩施和西安地震台数字地震仪记录以及临夏和周至地震台深井水位仪记录,分析发现,在临震前数天至数小时,上述各地震台不同学科观测仪器均记录到一些"跃变"和"震颤"震相。文中试图以颗粒物理原理,来认识不同距离、不同台站、不同学科的观测仪器在临震前相近时间段内记录的低频和高频震相,可能是不同地块在临震前发生预滑错动后激发的预滑震相Xp和地下气体在裂隙内流动激发的震颤震相Tp。观测结果表明:2008年5月8日03时至主震发生,各地震台所处地块在相近时段内逐次发生次数不等的预滑错动,其中1-2次较大错动可在噪声背景中被识别;各地震台预滑错动方向指向或背向主震震中。据此认为:汶川MW 7.9地震前,上述各地震台所处地块在不同大小、不同方向的力链驱动下,发生指向或背向主震震中的临震预滑现象。  相似文献   
87.
近年来水体富营养化呈扩张趋势,蓝藻水华不仅在太湖等大型湖泊频发,水面面积较小的天津于桥水库等也形势严峻,亟需加强卫星遥感监测.但是,以往在太湖等业务化使用非常成功的MODIS等卫星数据(约500 m),由于空间分辨率较低,难以满足小型水体的监测要求;而Landsat-8等空间分辨率较高的卫星数据(30 m),通常重返周期较长,无法满足水华高频监测需求.本文以天津市于桥水库(面积约80 km2)为研究区,针对常用的卫星数据,从空间、时间、光谱范围和数据可获取性共4个方面,评价不同卫星数据蓝藻水华监测能力和算法,同时对不同卫星监测结果一致性进行评估.结果表明:(1)筛选出国产HJ-1A\B CCD、GF-1 WFV和美国Landsat-8 OLI这3种卫星波段合适,空间分辨率较高,适用于桥水库蓝藻水华监测,但考虑到其重返周期较长,建议多星联合观测;(2)各个卫星监测结果与卫星影像目视解译结果基本一致,均方根误差和相对误差均分别控制在0.78 km2和4.9%以内;(3)不同卫星监测结果一致性良好,一致性精度达到99.5%;(4)根据历史影像结果,发现于桥水库2016年水质开始呈富营养化,藻华现象在夏、秋两季最为严重.研究表明,针对小型水面水体蓝藻水华监测,利用较高分辨率数据联合监测,是一种有效的替代策略,今后可在更多小型水域推广.  相似文献   
88.
国内阻尼器工程应用越来越多,阻尼器生产和应用时需要进行型式检验和出厂检验。中国和欧盟均制定了阻尼器产品检验标准,但在检测参数、检测方法和数据处理等方面存在一些差异,有些参数的检测还存在一些困难和争议,通过比较研究,指出中欧阻尼器检测标准的异同点,并分析各自的特点。以应用量较大的位移型软钢阻尼器和速度型黏滞流体阻尼器为例,比较中国和欧盟检测标准的异同点,内容包括检测方法、检测设备和数据处理方法等,提出一些对现有检测标准的改进建议,供同行参考。  相似文献   
89.
The uplift and associated exhumation of the Tibetan Plateau has been widely considered a key control of Cenozoic global cooling. The south-central parts of this plateau experienced rapid exhumation during the Cretaceous–Palaeocene periods. When and how the northern part was exhumed, however, remains controversial. The Hoh Xil Basin (HXB) is the largest late Cretaceous–Cenozoic sedimentary basin in the northern part, and it preserves the archives of the exhumation history. We present detrital apatite and zircon (U-Th)/He data from late Cretaceous–Cenozoic sedimentary rocks of the western and eastern HXB. These data, combined with regional geological constraints and interpreted with inverse and forward model of sediment deposition and burial reheating, suggest that the occurrence of ca. 4–2.7 km and ca. 4–2.3 km of vertical exhumation initiated at ca. 30–25 Ma and 40–35 Ma in the eastern and western HXB respectively. The initial differential exhumation of the eastern HXB and the western HXB might be controlled by the oblique subduction of the Qaidam block beneath the HXB. The initial exhumation timing in the northern Tibetan Plateau is younger than that in the south-central parts. This reveals an episodic exhumation of the Tibetan Plateau compared to models of synchronous Miocene exhumation of the entire plateau and the early Eocene exhumation of the northern Tibetan Plateau shortly after the India–Asia collision. One possible mechanism to account for outward growth is crustal shortening. A simple model of uplift and exhumation would predict a maximum of 0.8 km of surface uplift after upper crustal shortening during 30–27 Ma, which is insufficient to explain the high elevations currently observed. One way to increase elevation without changing exhumation rates and to decouple uplift from upper crustal shortening is through the combined effects of continental subduction, mantle lithosphere removal and magmatic inflation.  相似文献   
90.
Based on the ERA-Interim atmospheric reanalysis data from the European Medium-Term Weather Forecast Center from 1979 to 2016 and the ERSSTv4 sea surface temperature data from the US National Oceanic and Atmospheric Administration, the regional climate model CWRF was used to simulate the climate characteristics in East Asia. The results show that the CWRF model can well reproduce the average characteristics of the East Asian winter monsoon circulation, including the location and intensity of the low-level continental cold high pressure and variation characteristics of wind field in high and low levels. The occurrence area and frequency of the north wind in the simulation and the reanalysis data were further calculated and compared. It is shown that they are basically consistent. The distribution of air temperature and precipitation over China are well represented by the model. The water vapor transport is also in good agreement with the reanalysis data. The water vapor from the Bay of Bengal plays a vital role in the precipitation over South China. The simulation results of apparent heat source and apparent moisture sink show that the model can well simulate the thermal difference between the East Asian continent and the adjacent sea area. The analysis results indicate that CWRF model has the ability to simulate the main characteristics of the East Asian winter monsoon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号